Sequences & Series

Coach Name: Sir Muhammad Abdullah Shah

Edexcel IAL WMA12/01/P2/Jan 2021/Q8 (Series, Recurrence Relationships)

A sequence​​ a1 , a2, a3 , ​​ is defined by​​ 

an+1 = 2an + 32 - 7 

a1 = p - 3 

where p is a constant.​​ 

  • Find an expression for a2​​ in terms of p, giving your answer in simplest form.​​ 

(1)​​ 

Given that an​​ 

n=13an=p+15 

  • find the possible values of a2​​ 

(6)

SOLUTION​​ 

a- To find​​ a2, simply use the nth term formula given in the question.​​ 

an+1 = 2an + 32 - 7 

We will put​​ n=1, so that on the left hand side of the equation, we get​​ an+1=a1+1=a2

a1+1 = 2a1 + 32 - 7 

a2=2 a1+32-7

a2=2p-3+32-7

a2=2p2-7  

b-

it is given that the sum of the first 3 terms of the series, which expression is given as​​ n=13an, is equal to​​ p+15 . So, we are first going to find the sum of the first three terms by epanding the summation expression and then will equate it to​​ p+15.

a1+a2+a3=p+15

Where for​​ a3​​ we need to put​​ n=2. 

an+1 = 2an + 32 - 7 

a2+1 = 2a2 + 32 - 7 

a3=2 a2+32-7

Substituting the value of​​ a2​​ in the above expression.​​ 

a3=22p2-7+32-7

a3=22p2-42-7

a3=24p4-16p2+16-7

a3=8p4-32p2+32-7

a3=8p4-32p2+25

Now, summing all the first 3 terms of the expression and equating it to​​ p+15.​​ 

a1+a2+a3=p+15

p-3+2p2-7+8p4-32p2+25=p+15

8p4-30p2+p+15=p+15

8p4-30p2=0

8p4-30p2=0

4p4-15p2=0

p24p2-15=0

p2=0          4p2=15

p=0             p2=154

                           p= ±15 2

Substituting the both values of p to find the possible value of​​ a2.

a2=2p2-7

When,​​ p=0

   a2=202-7    

 a2= -7

When,​​ p= ±152

a2=2± 1522-7

a2=2154-7=7.5 -7

a2=0.5

Hence, the possible values of​​ 

a2=-7 & 0.5