Sequences & Series

Coach Name: Sir Muhammad Abdullah Shah

Edexcel IAL WMA12/01/P2/June 2019/Q1 (Recurrence Relationships)

Answer all questions. Write your answers in the spaces provided

 A sequence​​ a1, a2, a3, . is defined by

an+1=4-an

a1=3

Find the value of​​ 

  • ​​ 

  • a2

  • a107

(2)

 (b)​​ n=12000(2an-1)

(2)

SOLUTION​​ 

a- i- For​​ a2, put​​ n=1

an+1=4-an

a1+1=4-a1

Substituting​​ a1=3

a2=4-3

=4-3

a2=1

a-ii- Before we find​​ a107, lets see whats the patterm looks like.​​ 

a2+1=4-a2

a3=4-1

a3=3

For​​ a4,​​ 

a3+1=4-a3

a4=4-3

a4=1

 

Thus, this gives us alternating pattern:​​ 3, 1, 3, 1, .

Each odd term is 3 and even term is 1.​​ 

Now, the​​ a107​​ is an odd term so it must be 3.​​ 

Hence,​​ 

a107=3

b- Lets split the given summation equation.

n=12000(2an-1)=2n=1200an- n=12001

For​​ n=12002an,​​ an​​ is going to be​​ 3+1+3+1+. .  because it also follows the same pattern (all odd terms are 3 and all even terms will be 1).

n=12002an=23+1+3+1+. .  ..

Whereas,​​ n=12001, we are going to sum 200 terms where each term is 1.

n=12001=200(1+1+1+ .. . 1)

Hence,​​ 

n=12000(2an-1)=2n=1200an- n=12001

n=12000(2an-1)=23+1+3+1+. .  ..-2001+1+1+ .. . 1

n=12000(2an-1)=2 100 x 3+100 x 1-200

n=12000(2an-1)=2 400-200

n=12000(2an-1)=600