Solving Equations Using Logarithms

Coach Name: Sir Muhammad Abdullah Shah

Edexcel IAL WMA12/01/P2/June/Oct 2020/Q9 (Logarithm & Exponentials)

  • Find the exact value of x for which​​ 

log3x + 54 =log32x  1 

(4)​​ 

  • Given that​​ 

3y+3×21 2y= 108 

  • show that​​ 

0.75y = 2 

(4)​​ 

  • Hence find the value of y, giving your answer to 3 decimal places.​​ 

(2)

SOLUTION

i- Usng the laws of logarithm.

log3x+5-log32x-1=4

Applying the division rule.​​ 

log3 x+52x-1 =4 

34=x+52x-1

81=x+52x-1

162x-81=x+5

161x=86

x=86161

x=86161

ii- a-​​ 

3y+3×21 2y=108

34 x 33 x222y=108

54 x 344y=108

344y=10854

34y=2

0.75y=2

ii- b-​​ 

0.75y=2

Writing this exponential equation into log equation. Thereofre, the base in of the indices becomes the base of log. (Remember,​​ logab=k​​ can be converted into exponential expression as​​ b=ak).

y=log0.752

y= -2.4094

y= -2.409

log0.750.75y=log102

y=log102log100.75

y=-2.409