Edexcel IAL WMA12/01/P2/June 2021/Q7 (Logarithm, The Factor Theorem)
3 log3 2x – 1= 2 +log314x – 25
show that
2x3 – 3x2 – 30x + 56 = 0
(4)
(2)
3log3(2x – 1) = 2 +log3(14x – 25)
(4)
SOLUTION
a- Usng the laws of logarithm.

3log32x – 1-log314x – 25 =2
log32x-13-log314x-25=2
Applying the division rule from the flash card.
log32x-1314x-25=2
Converting the log equation to expnential one (index form). Therefore, the base of log becomes the base of indices.
2x-1314x-25=32
2x-13=914x-25
2x-12x-12=126x-225
2x-14x2-4x+1=126x-225
8x3-8x2+2x-4x2+4x-1=126x-225
8x3-12x2+6x-1-126x+225= 0
8x3-12x2-120x+224=0
Taking 4 as a common factor.
2x3-3x2-30x+56=0
b-
fx=2x3-3x2-30x+56
Using the factor theorem.

If x= -4 is a root then f-4=0
f-4=2-43-3-42-30 -4+56
f-4=2-64-316+120+56
f-4=-128-48+176
f-4=-176+176=0
f-4=0
Since f-4 comes out to be 0 therefore, -4 is a root of the cubic equation.
c- Since x=-4 is a root , x+4 is a factor of fx. Using the long division method to find the other two roots of the equation.
2x2
x+42x3-3x2-30x+58-2x3+8x2 -11x2-30x --11x2-44x 14x+56 14x +56- - -
2x3-3x2-30x+56=0
Hence,
x+42x2-11x+14=0
x+42x-7x-2=0
x=-4, 2x=7 x=2
x=72
Now, discarding those values of x that gives argument either negative or zero.
3log32x-1=2+log314x-28
x= -4→undefined
x=72, x=2