Solving Equations Using Logarithms

Coach Name: Sir Muhammad Abdullah Shah

Edexcel IAL WMA12/01/P2/Oct 2022/Q10 (Logarithms & Exponential Equations)

Given​​ a =log23 

  • write, in simplest form, in terms of a,​​ 

  • log29​​ 

  • log2316​​ 

(3)

  • Solve​​ 

3x ×2x+4 = 6 

giving your answer, in simplest form, in terms of a.​​ 

(4)

SOLUTION

I- Use the laws of logarithm, to give the answer in terms of a.​​ 

a-​​ 

log29 =log232

log29=2log23

Since​​ a=log23

log29=2a

b-​​ 

log2316=log23-log2 16

=log2312 -log224 

=12log23-4log22

log2316=12 a-4

 

ii- Applying the laws of logarithm, to solve the equation.​​ 

log23x x 2x+4=log26

Applying the mulplication rule here.​​ 

log23x+log22x+9 =log26

We will write the argument of​​ log26​​ into (2×3), so that we may get the answer in terms of a Since​​ a=log23.​​ 

 

log23x+log22x+9 =log22 x 3

xlog23+x+4log2 2=log22+log23

Putting​​ a=log23

xa+x+4=1+a

ax+x=1+a-4

x a+1=a-3

x=a-3a+1