Solving Equations Using Logarithms

Coach Name: Sir Muhammad Abdullah Shah

WMA12/01/IAL/Edexcel/P2/Oct 2019/Q7 (Logarithms, Series)

Given​​ logab = k​​ find, in simplest form in terms of k,

  • logaab

(2)

  • logaa2blogab3

(2)

 

  • n=150k+logabn 

(3)

SOLUTION​​ 

i- Usng the laws of log to solve the expression.​​ 

Applying the division rule.

logaab=logaa-logab

Substituting ​​ logab=k,

logaab=logaa12-k

Applying the power rule now.

logaab=12logaa-k

Remember,​​ logaa=1

logaab=12(1)-k 

ii- Applying the multiplication rule first.

logaa2blogab3=logaa2+logab3logab

Applying power rule now, to bring 2 down as the coefficient and Substituting ​​ logab=k.​​ 

=2logaa+k3k

Remember,​​ logaa=1

=2(1)+k3k

logaa2blogab3=2+k3k

 

iii- Applying the power rule to bring n down as the coefficient.​​ 

n=150k+loga bn=n=150(k+nlogab)

Since​​ logab=k, the expression becomes​​ 

=n=150k+nk

=n=150k1+n

On expanding it becomes

n=150k1+n=2k+3k+4k+ +51k

This gives us the arithmetic series, with​​ a=2k, and​​ l=51k,​​ 

Sn=n2a+l

S50=502 2k+51k=25 x 53k

S50=1325k