Solving Equations Using Logarithms

Coach Name: Sir Muhammad Abdullah Shah

Edexcel IAL WMA12/01/P2/Jan 2023/Q4 (Logarithmic​​ Equations,​​ Series Sigma Notation)

  • Using the laws of logarithms, solve

log34x + 2 =log35x + 7

(3)

  • Given that

r=12logayr=r=12loga yr       y > 1, a > 1, y  a 

find y in terms of a, giving your answer in​​ simplest form.​​ 

(3)

SOLUTION​​ 

i- Using the laws of logarithms to find the value of x.​​ 

2=log35x+7-log34x

(Applying the division rule.)

2=log35x+74x

32=5x+74x

9=5x+74x

36x=5x+7

31x=7

x=731

ii- ​​ Solving both sides of the equation with the help of sigma notation rule.​​ 

r=12logayr= r=12loga yr

(Solving both sides of the equation​​ separately.)

r=12logayr=  loga y+logay2

r=12loga yr=  loga y1+logay2

logay+logay2=logay+logay2

(Apply the power rule and write 2 as the coefficient of​​ logay.)​​ 

logay+2logay=logay+logay2

3logay=logay+logay2

3logay-logay=logay2

2logay=logay2

(We can’t apply the power rule on​​ logay2because the square is not the power of​​ y​​ instead it is the power whole term​​ logay.) ​​ 

2=logay2logay

2=logay

a2=y

Hence,​​ 

y=a2