Factor and Remainder Theorems

Edexcel IAL WMA12/01/P2/Oct 2022/Q02 (Remainder Theorem, Binomials, Differentiation)

A curve C has equation y = f(x) where

f(x) = 2  kx3

and k is a constant. Given that when f(x)is divided by (4x – 5) the remainder is​​ 24332

  • show that​​ k =25​​ 

(2)​​ 

  • Find the first three terms, in ascending powers of x, of the binomial expansion of​​ 

2-25x5

giving each term in simplest form.​​ 

(3)​​ 

Using the solution to part (b) and making your method clear,​​ 

  • find the gradient of C at the point where x = 0​​ 

(2)

 

SOLUTION​​ 

a- Using factor theorem, to find the value of​​ k.

(Consider the last bullet point of the flash card above, so oncomparing​​ 4x-5​​ to​​ ax-b,​​ a=4​​ and​​ b=5, and the remainder is​​ f54. Using the fact that the remainder is​​ 24332, substitute​​ x=54​​ and solve the equation.)​​ 

4x-5=0

x=54

f54=24332

2-k×545=24332

2-k×54= 243325

2-54k=32

2-32=54 k 

12=54 k 

2=5k

k=25

b-​​ Using binomial theorem to find the first three terms of the expression.​​ 

Finding the first three terms separately and will then arrange them in the ascending order of power of x.​​ 

an=5025-25x0  =1 x 32 x 1=32

n1 an-1 b=5124-25x-1=8 x 16 x-28 x= -32x

n2 an-2 b2=5223-25x2=10 x 8 x425 x2=645 x2

2-25x5=32-32x+645 x2+

c- To find the gradient of C, find the first derivative of the given equation or expression.​​ 

fx=2-25x5=32-32x+645 x2+

fx=32-32x+645x2+.

f'x= -32+1285 x

f'0= -32+12850 

f'0= -32